Snow Load Report

1. Roof and Building Data

Ground Snow Load (Pg):	35.0 psf
Roof Pitch:	$3 / 12$
Risk Category:	I
Eave-to-Ridge (W):	12 ft.
Terrain Category:	B
Exposure:	Partially Exposed
Thermal Factor (Ct):	1.20
Roof Surface:	Metal
Roof System:	Rafter
Spacing:	$24 \mathrm{in} . \mathrm{o} / \mathrm{c}$
Overhang:	24 in.

2. Design Loads

Top Chord Dead Load: 7 psf

Bottom Chord Dead Load: 10 psf
SF $($ Slope Factor $)=1 / \operatorname{Cosine}(\Phi)=1.03$ (Dead loads specified on a projected horizontal basis take into account the effect of the pitch via a slope factor.)
Adj. TCDL (TCDL x SF): $\quad 7.2 \mathrm{psf}$

3. Design Assumptions

Code Standard: ASCE 7-10
Number of Plies: 1 PLY
Bottom Chord Pitch: $0 / 12$

4. Snow Load Calculations

Calculate flat roof snow load pf_{f} using the following equation:
$\mathrm{p}_{\mathrm{f}}=0.7 \mathrm{Ce}_{\mathrm{e}} \mathrm{C}_{\mathrm{t}} \mathrm{I}_{\mathrm{s}}$
where:
$\mathrm{p}_{\mathrm{f}}=$ Flat Roof Snow Load in psf
$\mathrm{C}_{\mathrm{e}}=1.00=$ Exposure Factor, as determined by ASCE 7-10 Table 7-2 (Terrain Cat. B, Exp. Partially Exposed)
$\mathrm{C}_{\mathrm{t}}=1.20=$ Thermal Factor, as determined by ASCE 7-10 Table 7-3
$\mathrm{I}_{\mathrm{S}}=0.80=$ Importance Factor, as determined by ASCE 7-10 Table 1.5-2 (Risk Cat. I)
$\mathrm{pg}=35.0 \mathrm{psf}=$ Ground Snow Load in psf
$\mathrm{p}_{\mathrm{f}}=0.7 \mathrm{C}_{\mathrm{e}} \mathrm{C}_{\mathrm{t}} \mathrm{I}_{\mathrm{s}} \mathrm{p}_{\mathrm{g}}=0.7(1.00)(1.20)(0.80)(35.0)=23.5 \mathrm{psf}$

A minimum roof snow load, p_{m} shall apply to monoslope, hip and gable roofs with slopes less than 15 degrees using the following equations:
Where p_{g} is 20 psf or less: $\mathrm{p}_{\mathrm{m}}=\mathrm{I}_{\mathrm{s}} \mathrm{p}_{\mathrm{g}}$
Where pg_{g} exceeds $20 \mathrm{psf}: \mathrm{p}_{\mathrm{m}}=\mathrm{I}_{\mathrm{S}}(20)$
Minimum roof snow load of $\mathrm{p}_{\mathrm{m}}=\mathrm{I}_{\mathrm{s}}(20)=0.80 \times 20=16.0 \mathrm{psf}$ and hence does not control.

For locations where p_{g} is 20 psf or less, but not zero, all roofs with slopes (in degrees) less than $\mathrm{W} / 50$ with W in feet shall included a 5 psf rain-on-snow surcharge load. This additional load applies only to the sloped roof (balanced) load case and need not be used in combination with drift, sliding, unbalanced, minimum, or partial loads.

Roof slope in degrees $\left(14.04^{\circ}\right)$ is greater than $\mathrm{W} / 50=0.2$, the 5.0 psf rain-on-snow surcharge load does not apply.

Calculate sloped roof snow load p_{s} using the following equation:
$\mathrm{p}_{\mathrm{s}}=\mathrm{C}_{\mathrm{s}} \mathrm{p}_{\mathrm{f}}$
where:
$\mathrm{p}_{\mathrm{s}}=$ Sloped Roof Snow Load in psf
$\mathrm{C}_{\mathrm{s}}=1.00=$ Roof Slope Factor, as determined by ASCE 7-10 Sec. 7.4.1-7.4.4 and Figure 7-2
$\mathrm{p}_{\mathrm{f}}=$ Flat Roof Snow Load in psf
Roof surface (Metal) is considered a "slippery" roof. For a $\mathrm{C}_{\mathrm{t}}=1.20$ the roof slope factor C_{s} is given by the dashed line of ASCE 7-10 Figure 7-2c.
$\mathrm{p}_{\mathrm{s}}=\mathrm{C}_{\mathrm{s}} \mathrm{p}_{\mathrm{f}}=(1.00)(23.5)=23.5 \mathrm{psf}$

Calculate unbalanced snow load for hip and gable roofs as shown in ASCE 7-10 Figure 7-5.
Unbalanced snow loads are required for roof pitches between $1 / 2$ on 12 to 7 on 12 .
Using the following equations:
$\gamma=0.13 \mathrm{pg}+14$ (snow density)
$h_{d}=.43 \sqrt[3]{l_{u}} \sqrt[4]{p_{g}+10}-1.5$ (drift height) [if $1_{\mathrm{u}}<20 \mathrm{ft}$., use $\mathrm{l}_{\mathrm{u}}=20 \mathrm{ft}$.]
$l_{d}=\frac{8}{3} h_{d} \sqrt{S}$ (width of drift surcharge)
$p_{d}=h_{d} \gamma / \sqrt{S}$ (drift surcharge snow load)
where:
$\gamma=$ Snow density in pcf, not to exceed 30 pcf.
$h_{d}=$ Drift height in feet, as determined by eqn. or ASCE 7-10 Fig. 7-9.
$\mathrm{l}_{\mathrm{u}}=\mathrm{W}=$ Ridge to eave distance in feet, windward side of roof.
$\mathrm{S}=12 /$ Roof Pitch
$l_{d}=$ Width of drift surcharge in feet.
$p_{d}=$ Drift Surcharge Snow Load in psf

For a roof rafter system with $\mathrm{W} \leq 20 \mathrm{ft}$., the simplified unbalanced snow load is given by the third diagram of ASCE Figure 7-5.
$\mathrm{p}_{\text {windward }}=0.0 \mathrm{psf}$
pleeward $=\mathrm{I}_{\mathrm{s}} \mathrm{pg}_{\mathrm{g}}=(0.80)(35.0)=28.0 \mathrm{psf}$

On warm roofs apply a distributed $2 \mathrm{p}_{\mathrm{f}}$ snow load on all overhanging portions as per ASCE 7-10 section 7.4.5.
No other loads except dead loads shall be present on the roof when this uniformly distributed load is applied.
$2 \mathrm{p}_{\mathrm{f}}=(2)(23.5)=47.0 \mathrm{psf}$

$\mathrm{R}_{1}=\mathrm{D}+\mathrm{S}=373.2 \mathrm{lbs}+564.5 \mathrm{lbs}$
$\mathrm{R}_{2}=\mathrm{D}+\mathrm{S}=373.2 \mathrm{lbs}+564.5 \mathrm{lbs}$

$\mathrm{R}_{1}=\mathrm{D}+\mathrm{S}=373.2 \mathrm{lbs}+134.4$
$\mathrm{R}_{2}=\mathrm{D}+\mathrm{S}=373.2 \mathrm{lbs}+537.6 \mathrm{lbs}$

$\mathrm{R}_{1}=\mathrm{D}+\mathrm{S}=373.2 \mathrm{lbs}+188.2 \mathrm{lbs}$
$\mathrm{R}_{2}=\mathrm{D}+\mathrm{S}=373.2 \mathrm{lbs}+188.2 \mathrm{lbs}$

> *Disclaimer: The calculations produced herein are for initial design and estimating purposes only. The calculations and drawings presented do not constitute a fully engineered design. All of the load cases required to fully design an actual structure are not provided by this calculator. For the design of an actual structure, a registered and licensed professional should be consulted as per IRC 2012 Sec. R802.10.2 and designed according to the minimum requirements of ASCE $7-10$. The snow load calculations provided by this online tool are for educational and illustrative purposes only. Medeek Design assumes no liability or loss for any designs presented and does not guarantee fitness for use.

Subject Snow Loads	Customer	Location		$\begin{aligned} & \text { Job No. } \\ & 2020 \mathrm{~A} 774 \end{aligned}$
Engr. N. Wilkerson	MEDEEK ENGINEERING INC. 3050 State Route 109 Copalis Beach, WA 98535 ph. (425) 420-5715 www.medeek.com		This report may not be copied, reproduced or distributed without thewritten consent of written consent ofMedeek Engineering Inc.	Rev.
Date $\quad 6 / 10 / 2020$			Page 4	

